
Competitive Security Assessment

uniwhale.co

Feb 28th, 2023

Secure3 secure3.io

$

uniwhale.co Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

UNW-1:APPROVED_ROLE is able to remove margin from user's order in TradingCore 8

UNW-2:Access control on view function is unnecessary 10

UNW-3:Centralized risk 11

UNW-4:Check the return value of ERC20 token operations 12

UNW-5:Fee-On-Transfer tokens not supported in LiquidityPool on mint 13

UNW-6:LiquidityPool can be broken by first depositor 14

UNW-7:LiquidityPool cannot be unpause 17

UNW-8:Runtime deadline calculation allow pending transcations to be maliciously executed 18

UNW-9:UniWhale - Token compatibility causes program errors in LiquidityPool contract 20

UNW-10: AbstractRegistry::_updateImbalancePerPriceId computation error when called

twice in one block

24

UNW-11: AbstractRegistry::setFundingFeePerPriceId computation error when called twice

in one block

26

UNW-12: AbstractRegistry Set fee limit 28

UNW-13: LiquidityPool::mint Use safeTransferFrom 29

UNW-14: RegistryCore::updateOpenOrder Lack of salt validation 30

UNW-15: TradingCore::createTrade lack of notPaused modifier 34

UNW-16:frontrun risk in LiquidityPool contract mint function 35

UNW-17:funding fee should not be applied to margin in TradingCoreLib._closeTrade function 37

UNW-18:updateLatestPrice might cause loss for user 38

Disclaimer 42

uniwhale.co Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

uniwhale.co Competitive Security Assessment

4

Overview

Project Detail

Project Name uniwhale.co

Platform & Language Solidity

Codebase https://github.com/uniwhale-io/uniwhale-v1
audit commit - 58e7ed410d7252f926e92194dc70bafd7049fbd6
final commit - d9b35fed52122aa06582eeb86409b6cdef68c4b8

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 3 0 0 2 1 0

Low 8 0 3 4 1 0

Informational 7 0 4 1 1 1

uniwhale.co Competitive Security Assessment

5

Audit Scope

File Commit Hash

packages/contracts/core-v1/contracts/TradingCore.sol 58e7ed410d7252f926e92194dc70bafd7049fbd6

packages/contracts/core-
v1/contracts/interfaces/AbstractRegistry.sol

58e7ed410d7252f926e92194dc70bafd7049fbd6

packages/contracts/core-
v1/contracts/libs/TradingCoreLib.sol

58e7ed410d7252f926e92194dc70bafd7049fbd6

packages/contracts/core-
v1/contracts/LiquidityPool.sol

58e7ed410d7252f926e92194dc70bafd7049fbd6

packages/contracts/core-
v1/contracts/RegistryCore.sol

58e7ed410d7252f926e92194dc70bafd7049fbd6

uniwhale.co Competitive Security Assessment

6

Code Assessment Findings

ID Name Category Severity Status Contributor

UNW-1 APPROVED_ROLE is able to remove
margin from user's order in
TradingCore

Privilege
Related

Medium Mitigated 0xxm

UNW-2 Access control on view function is
unnecessary

Gas
Optimization

Informational Acknowled
ged

0xxm

UNW-3 Centralized risk Privilege
Related

Informational Mitigated Xi_Zi

UNW-4 Check the return value of ERC20 token
operations

Logical Low Fixed yekong

uniwhale.co Competitive Security Assessment

7

UNW-5 Fee-On-Transfer tokens not supported
in LiquidityPool on mint

Logical Informational Fixed helookslike
me

UNW-6 LiquidityPool can be broken by first
depositor

Logical Medium Fixed 0xxm

UNW-7 LiquidityPool cannot be unpause Logical Low Fixed 0xxm

UNW-8 Runtime deadline calculation allow
pending transcations to be maliciously
executed

Logical Low Acknowled
ged

0xxm

UNW-9 UniWhale - Token compatibility causes
program errors in LiquidityPool
contract

Logical Informational Acknowled
ged

Xi_Zi

UNW-10 AbstractRegistry::_updateImbala
ncePerPriceId computation error
when called twice in one block

Logical Medium Fixed alansh

UNW-11 AbstractRegistry::setFundingFee
PerPriceId computation error when
called twice in one block

Logical Low Fixed alansh

UNW-12 AbstractRegistry Set fee limit Privilege
Related

Low Acknowled
ged

helookslike
me

UNW-13 LiquidityPool::mint Use
safeTransferFrom

Logical Informational Acknowled
ged

helookslike
me

UNW-14 RegistryCore::updateOpenOrder
Lack of salt validation

Logical Low Fixed Xi_Zi

UNW-15 TradingCore::createTrade lack of
notPaused modifier

Logical Low Mitigated Xi_Zi

UNW-16 frontrun risk in LiquidityPool
contract mint function

Race
Condition

Informational Acknowled
ged

alansh

UNW-17 funding fee should not be applied to
margin in
TradingCoreLib._closeTrade
function

Logical Informational Declined alansh

UNW-18 updateLatestPrice might cause loss for
user

Logical Low Acknowled
ged

0xxm

uniwhale.co Competitive Security Assessment

8

UNW-1:APPROVED_ROLE is able to remove margin from
user's order in TradingCore

Category Severity Code Reference Status Contributor

Privilege Related Medium code/packages/contracts/core-
v1/contracts/TradingCore.sol#L21
9-L222

Mitigated 0xxm

Code

219: _require(
220: t.user == msg.sender || hasRole(APPROVED_ROLE, msg.sender),
221: Errors.USER_SENDER_MISMATCH
222:);

Description
0xxm : APPROVED_ROLE is allowed to removeMargin on behalf of user, which puts users' order in risk of forced
liquidation. Meanwhile, the emitted event still records this operation by user.

function removeMargin(
 bytes32 orderHash,
 bytes[] calldata priceData,
 uint256 margin
) external payable notPaused nonReentrant {
 IRegistry.Trade memory t = registry.openTradeByOrderHash(orderHash);

 _require(
 t.user == msg.sender || hasRole(APPROVED_ROLE, msg.sender),
 Errors.USER_SENDER_MISMATCH
);
 ...
 registry.updateOpenOrder(orderHash, trade);
 marginPool.transferBase(msg.sender, margin);
 emit UpdateOpenOrderEvent(t.user, orderHash, trade, false, margin);
}

Recommendation

uniwhale.co Competitive Security Assessment

9

0xxm : It is recommended to remediate this over-centralization issue by removing APPROVED_ROLE's privilege in
removeMargin :

_require(
 t.user == msg.sender,
 Errors.USER_SENDER_MISMATCH
);

Client Response
APPROVED_ROLE is required so the extensions of TradingCore (e.g. TradingCoreWithRouter, not covered by the audit)
can manage margin on behalf of users. It does somewhat increase the centralisation risk, but I don't think it deviates
significantly from other centralisation risk we have. As a compromise, we can replace t.user with msg.sender in the event
emission (so it is clear who called removeMargin)

uniwhale.co Competitive Security Assessment

10

UNW-2:Access control on view function is unnecessary

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/packages/contracts/core-
v1/contracts/TradingCore.sol#L10
2

Acknowledged 0xxm

Code

102:) external view onlyRole(APPROVED_ROLE) returns (IRegistry.Trade memory) {

Description
0xxm : Function createTrade is a view function. There is no much sense to add access control to it, as contract code
and storage on blockchain is public, and there is no way to prevent anyone from reading them.

function createTrade(
 OpenTradeInput memory openData,
 uint256 openPrice,
 uint256 slippage
) external view onlyRole(APPROVED_ROLE) returns (IRegistry.Trade memory) {
 return _createTrade(openData, openPrice, slippage);
}

Recommendation
0xxm : Remove onlyRole check in createTrade function.

Client Response
we agree that this restriction does not add to the security aspects of the contract. This was added from the product
design perspective and for convenience purposes (to avoid accidental use), so we would like to keep the restriction.

uniwhale.co Competitive Security Assessment

11

UNW-3:Centralized risk

Category Severity Code Reference Status Contributor

Privilege Related Informational code/packages/contracts/core-
v1/contracts/RegistryCore.sol#L7
code/packages/contracts/core-
v1/contracts/OracleAggregator.sol
#L11
code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L15
code/packages/contracts/core-
v1/contracts/TradingCore.sol#L18

Mitigated Xi_Zi

Code

7:contract RegistryCore is AbstractRegistry {

11:contract OracleAggregator is AbstractOracleAggregator, PythParser {

15:contract LiquidityPool is

18:contract TradingCore is

Description
Xi_Zi : As there are privileged accounts of various roles in the contract, which play a key role in the contract, it is
necessary to implement multi-signature protection for the accounts of various roles in the contract.

Recommendation
Xi_Zi : Multi-sign protection is required for the accounts of various roles of the contract.

Client Response
the centralisation risk is mitigated somewhat by the contract owner being a multisig/DAO contract wallet (e.g. Gnosis
Safe).

uniwhale.co Competitive Security Assessment

12

UNW-4:Check the return value of ERC20 token operations

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L84
code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L147

Fixed yekong

Code

84: ERC20(tokenIn).approveFixed(address(swapRouter), amountIn);

147: baseToken.approveFixed(address(swapRouter), returnBalanceNet);

Description
yekong : The return value of the external call is not stored, and it is impossible to determine whether the authorization
was successful

Recommendation
yekong : The return value of the external call is not stored, and it is impossible to determine whether the 'approve' was
successful

Client Response
ERC20Fixed library now uses SafeERC20 to revert on unexpected behaviour/result.

uniwhale.co Competitive Security Assessment

13

UNW-5:Fee-On-Transfer tokens not supported in LiquidityPool
on mint

Category Severity Code Reference Status Contributor

Logical Informational code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L83-
L84

Fixed helookslikeme

Code

83: ERC20(tokenIn).transferFromFixed(msg.sender, address(this), amountIn);
84: ERC20(tokenIn).approveFixed(address(swapRouter), amountIn);

Description
helookslikeme : Fee-on-transfer tokens lead to problems in mint

Recommendation
helookslikeme : Check amount of tokens received or disallow fee tokens from being used in the vault.

Client Response
we assume by "fee-on-transfer" tokens, you mean deflationary tokens. We now check the balance after the transfer
before calling approveFixed. We will also whitelist what can be swapped into the baseToken as an extra pre-caution.

uniwhale.co Competitive Security Assessment

14

UNW-6:LiquidityPool can be broken by first depositor

Category Severity Code Reference Status Contributor

Logical Medium code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L99-
L101

Fixed 0xxm

Code

99: uint256 returnBalance = baseBalance == 0
100: ? amountNet
101: : amountNet.mulDown(balance).divDown(baseBalance);

Description
0xxm : Initial value of LP token can be manipulate by the first depositor, so that users may not receive shares for their
deposit of baseToken.

Consider the following POC:

uniwhale.co Competitive Security Assessment

15

function mint(
 uint256 amountIn,
 uint256 amountOutMinimum,
 address tokenIn,
 uint24 poolFee
) public notPaused nonReentrant {
 uint256 baseBalance = _getBaseBalance();
 uint256 balance = (this).totalSupplyFixed();
 uint256 amountGross = amountIn;

 if (tokenIn == address(baseToken)) {
 baseToken.transferFromFixed(msg.sender, address(this), amountGross);
 } else {
 ...
 }
 uint256 fee = amountGross.mulDown(mintFee);
 uint256 amountNet = amountGross.sub(fee);
 accruedFee += fee;
 uint256 returnBalance = baseBalance == 0
 ? amountNet
 : amountNet.mulDown(balance).divDown(baseBalance);

 _mint(msg.sender, returnBalance);
}

For simplicity of fixedpoint calculation, let us assume all tokens' decimal is 18. An attacker can exploit using these steps:

Add 1 wei base token to LiquidityPool. Since both fee (see another issue for why fee can be zero) and
baseBalance is zero, the attacker will get 1 wei LP token (returnBalance == amountNet == amountGross ==
amountIn).
Transfer large amount of baseToken directly to the pool, such as 1e9 baseToken. Since no new LP token is minted, 1
wei LP token worths 1e9 baseToken.
Normal users add liquidity to pool will receive 0 LP token if they add less than 1e9 token because of rounding division.

Recommendation
0xxm : - Uniswap V2 solved this problem by sending the first 1000 LP tokens to the zero address. The same can be
done in this case i.e. when baseBalance == 0, send the first min liquidity LP tokens to the zero address to enable share
dilution.

In mint(), ensure the number of LP tokens to be minted is non-zero:

https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol#L119-L124

uniwhale.co Competitive Security Assessment

16

 uint256 returnBalance = baseBalance == 0
 ? amountNet
 : amountNet.mulDown(balance).divDown(baseBalance);
 require(returnBalance != 0, "No LP minted");
 _mint(msg.sender, returnBalance);

Client Response
we now check returnBalance != 0

uniwhale.co Competitive Security Assessment

17

UNW-7:LiquidityPool cannot be unpause

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L207
-L209

Fixed 0xxm

Code

207: function pause() external virtual onlyOwner {
208: _pause();
209: }

Description
0xxm : LiquidityPool only implements pause() but not unpause() function, meaning it will be lock forever if paused.

Consider below POC contract

function pause() external virtual onlyOwner {
 _pause();
}

Recommendation
0xxm : Introduce an unpause() in LiquidityPool contract:

function unpause() external virtual onlyOwner {
 _unpause();
}

Client Response
Fixed

uniwhale.co Competitive Security Assessment

18

UNW-8:Runtime deadline calculation allow pending
transcations to be maliciously executed

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/SwapRouter.sol#L65
code/packages/contracts/core-
v1/contracts/SwapRouter.sol#L106

Acknowledged 0xxm

Code

65: deadline: block.timestamp,

106: deadline: block.timestamp,

Description
0xxm : The SwapRouter contract set the uniswap deadline as block.timestamp instead of off-chain paramter given
by user, which enables pending transcations to be maliciously executed at a later point.

IUniswapV3.ExactInputSingleParams memory params = IUniswapV3
 .ExactInputSingleParams({
 tokenIn: input.tokenIn,
 tokenOut: input.tokenOut,
 fee: input.poolFee,
 recipient: msg.sender,
 deadline: block.timestamp,
 amountIn: input.amountIn /
 (10 ** (18 - ERC20(input.tokenIn).decimals())),
 amountOutMinimum: input.amountOutMinimum /
 (10 ** (18 - ERC20(input.tokenOut).decimals())),
 sqrtPriceLimitX96: 0
 });

Uniswap provides their users with an option to limit the execution of their pending actions. However, setting it to a runtime
calculated block.timestamp will allow the swap transation to be executed as a any time.

This issue can be maliciously exploited is through MEV: Alice wants to add liquidity to the pool using token A that is not a
base token, which invokes an internal transcation to swap A token to baseToken in uniswap. This transcation will be
pending in the mempool if current fees are too high. The price of token A has increased significantly during the pending,
meaning Alice would receive a lot more base token when the swap is executed. But that also means that her
amountOutMinimum value is outdated and would allow for significant slippage. A MEV bot detects the pending

uniwhale.co Competitive Security Assessment

19

transaction. Since the outdated amountOutMinimum now allows for high slippage, the bot sandwiches Alice, resulting
in significant profit for the bot and significant loss for Alice.

Recommendation
0xxm : Introduce a deadline parameter from user, instead of block.timestamp .

Client Response
we will implement this as part of our book of work.

uniwhale.co Competitive Security Assessment

20

UNW-9:UniWhale - Token compatibility causes program errors
in LiquidityPool contract

Category Severity Code Reference Status Contributor

Logical Informational code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L70-
L104

Acknowledged Xi_Zi

Code

uniwhale.co Competitive Security Assessment

21

70: function mint(
71: uint256 amountIn,
72: uint256 amountOutMinimum,
73: address tokenIn,
74: uint24 poolFee
75:) public notPaused nonReentrant {
76: uint256 baseBalance = _getBaseBalance();
77: uint256 balance = ERC20PausableUpgradeable(this).totalSupplyFixed();
78: uint256 amountGross = amountIn;
79:
80: if (tokenIn == address(baseToken)) {
81: baseToken.transferFromFixed(msg.sender, address(this), amountGross);
82: } else {
83: ERC20(tokenIn).transferFromFixed(msg.sender, address(this), amountIn);
84: ERC20(tokenIn).approveFixed(address(swapRouter), amountIn);
85:
86: amountGross = swapRouter.swapGivenIn(
87: ISwapRouter.SwapGivenInInput(
88: tokenIn,
89: address(baseToken),
90: amountIn,
91: amountOutMinimum,
92: poolFee
93:)
94:);
95: }
96: uint256 fee = amountGross.mulDown(mintFee);
97: uint256 amountNet = amountGross.sub(fee);
98: accruedFee += fee;
99: uint256 returnBalance = baseBalance == 0
100: ? amountNet
101: : amountNet.mulDown(balance).divDown(baseBalance);
102:
103: _mint(msg.sender, returnBalance);
104: }

Description
Xi_Zi : The mint function passes the external token through the tokenIn parameter, but does not consider token
compatibility. If there is a token transaction deflation or inflation mechanism, the amount of tokens actually received by

uniwhale.co Competitive Security Assessment

22

the contract may not be consistent with the input.amountIn. However, amountIn is also used when the contract authorizes
unswapV3, which may cause an error in exchange.

function mint(
 uint256 amountIn,
 uint256 amountOutMinimum,
 address tokenIn,//@audit
 uint24 poolFee
) public notPaused nonReentrant {
 uint256 baseBalance = _getBaseBalance();
 uint256 balance = ERC20PausableUpgradeable(this).totalSupplyFixed();
 uint256 amountGross = amountIn;

 if (tokenIn == address(baseToken)) {
 baseToken.transferFromFixed(msg.sender, address(this), amountGross);
 } else {
 ERC20(tokenIn).transferFromFixed(msg.sender, address(this), amountIn);//@audit
 ERC20(tokenIn).approveFixed(address(swapRouter), amountIn);//@audit

 amountGross = swapRouter.swapGivenIn(
 ISwapRouter.SwapGivenInInput(
 tokenIn,
 address(baseToken),
 amountIn,
 amountOutMinimum,
 poolFee
)
);
 }
 uint256 fee = amountGross.mulDown(mintFee);
 uint256 amountNet = amountGross.sub(fee);
 accruedFee += fee;
 uint256 returnBalance = baseBalance == 0
 ? amountNet
 : amountNet.mulDown(balance).divDown(baseBalance);

 _mint(msg.sender, returnBalance);
 }

Recommendation

uniwhale.co Competitive Security Assessment

23

Xi_Zi : Advised to run the afaterbalance-beforebalance command to check the number of tokens,Think more about token
compatibility issues.

Client Response
we will implement whitelist to address the token compatibility issue.

uniwhale.co Competitive Security Assessment

24

UNW-
10: AbstractRegistry::_updateImbalancePerPriceId
computation error when called twice in one block

Category Severity Code Reference Status Contributor

Logical Medium code/packages/contracts/core-
v1/contracts/interfaces/AbstractRe
gistry.sol#L353-L358

Fixed alansh

Code

353: imbalance.uptoLastUpdate =
354: (imbalance.current *
355: int256(currentBlock - lastUpdate) +
356: imbalance.uptoLastUpdate *
357: int256(lastUpdate - imbalance.initialUpdate)) /
358: int256(currentBlock - imbalance.initialUpdate);

Description
alansh : If there're two consecutive calls to _updateImbalancePerPriceId in the same block(highly probable as
it's triggered by users), the net affect should be the same as only the second call is invoked. Otherwise the funding fee
may be higher than expected.

Recommendation
alansh : Consider below fix in the AbstractRegistry._updateImbalancePerPriceId() function

 uint256 passedBlock = currentBlock - 1 - lastUpdate;
 if (passedBlock > 0) {
 imbalance.uptoLastUpdate =
 (imbalance.current * passedBlock) +
 imbalance.uptoLastUpdate *
 int256(lastUpdate - imbalance.initialUpdate) /
 int256(currentBlock - 1 - imbalance.initialUpdate);
 }

Client Response

uniwhale.co Competitive Security Assessment

25

Fixed

uniwhale.co Competitive Security Assessment

26

UNW-11: AbstractRegistry::setFundingFeePerPriceId
computation error when called twice in one block

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/interfaces/AbstractRe
gistry.sol#L288-L293

Fixed alansh

Code

288: fundingFee.uptoLastUpdate =
289: (fundingFee.current *
290: (currentBlock - lastUpdate) +
291: fundingFee.uptoLastUpdate *
292: (lastUpdate - fundingFee.initialUpdate)) /
293: (currentBlock - fundingFee.initialUpdate);

Description
alansh : If there're two consecutive calls to setFundingFeePerPriceId in the same block, the net affect should be
the same as only the second call is invoked. Otherwise the user may be charge more fees than expected.

Recommendation
alansh : Consider below fix in the AbstractRegistry.setFundingFeePerPriceId() function

 uint256 passedBlock = currentBlock - 1 - lastUpdate;
 if (passedBlock > 0) {
 fundingFee.uptoLastUpdate =
 (fundingFee.current * passedBlock +
 fundingFee.uptoLastUpdate *
 (lastUpdate - fundingFee.initialUpdate)) /
 (currentBlock -1 - fundingFee.initialUpdate);
 }

More strictly speaking, setFundingFeePerPriceId should not be called twice in the same block, otherwise users
may be charged abnormally, so the alternative fix is:

uniwhale.co Competitive Security Assessment

27

 uint256 passedBlock = currentBlock - 1 - lastUpdate;
 require(passedBlock > 0);
 fundingFee.uptoLastUpdate =
 (fundingFee.current * passedBlock +
 fundingFee.uptoLastUpdate *
 (lastUpdate - fundingFee.initialUpdate)) /
 (currentBlock -1 - fundingFee.initialUpdate);

Client Response
Fixed

uniwhale.co Competitive Security Assessment

28

UNW-12: AbstractRegistry Set fee limit

Category Severity Code Reference Status Contributor

Privilege Related Low code/packages/contracts/core-
v1/contracts/interfaces/AbstractRe
gistry.sol#L260-L264

Acknowledged helookslikeme

Code

260:
261: function setFee(uint256 _fee) external onlyOwner {
262: fee = _fee;
263: emit SetFeeEvent(fee);
264: }

Description
helookslikeme : Owners can set a very high _fee value, result the user has to pay very high cost.

Recommendation
helookslikeme : Set a maximum handling fee cap in the setFee function.

Client Response
we will implement this as part of our book of work

uniwhale.co Competitive Security Assessment

29

UNW-13: LiquidityPool::mint Use safeTransferFrom

Category Severity Code Reference Status Contributor

Logical Informational code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L83

Acknowledged helookslikeme

Code

83: ERC20(tokenIn).transferFromFixed(msg.sender, address(this), amountIn);

Description
helookslikeme : The transferFrom() method is used instead of safeTransferFrom(), presumably to save gas. I however
argue that this isn’t recommended because:

OpenZeppelin’s documentation discourages the use of transferFrom(), use safeTransferFrom() whenever possible

Recommendation
helookslikeme : Use OpenZeppelin's SafeERC20 library to increase the compatibility of token operations.

Client Response
ERC20Fixed library now uses SafeERC20 to revert on unexpected behaviour/result.

https://docs.openzeppelin.com/contracts/4.x/api/token/erc721#IERC721-transferFrom-address-address-uint256-

uniwhale.co Competitive Security Assessment

30

UNW-14: RegistryCore::updateOpenOrder Lack of salt
validation

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/RegistryCore.sol#L10
9-L140

Fixed Xi_Zi

Code

uniwhale.co Competitive Security Assessment

31

109: function updateOpenOrder(
110: bytes32 orderHash,
111: Trade memory trade
112:) external override onlyRole(APPROVED_ROLE) {
113: Trade memory t = _openTradeByOrderHash[orderHash];
114:
115: _require(t.user == trade.user, Errors.TRADER_OWNER_MISMATCH);
116: _require(t.priceId == trade.priceId, Errors.PRICE_ID_MISMATCH);
117: _require(t.isBuy == trade.isBuy, Errors.TRADE_DIRECTION_MISMATCH);
118:
119: _openTradeByOrderHash[orderHash] = trade;
120: totalMarginPerUser[trade.user] = totalMarginPerUser[trade.user]
121: .sub(t.margin)
122: .add(trade.margin);
123: minCollateral -= t.margin.mulDown(t.maxPercentagePnL);
124: minCollateral += trade.margin.mulDown(t.maxPercentagePnL);
125:
126: if (t.isBuy) {
127: totalLongPerPriceId[t.priceId] -= t.leverage.mulDown(t.margin);
128: totalLongPerPriceId[trade.priceId] += trade.leverage.mulDown(
129: trade.margin
130:);
131: _updateLongImbalancePerPriceId(trade.priceId);
132: _updateShortImbalancePerPriceId(trade.priceId);
133: } else {
134: totalShortPerPriceId[t.priceId] -= t.leverage.mulDown(t.margin);
135: totalShortPerPriceId[trade.priceId] += trade.leverage.mulDown(
136: trade.margin
137:);
138: _updateLongImbalancePerPriceId(trade.priceId);
139: _updateShortImbalancePerPriceId(trade.priceId);
140: }

Description
Xi_Zi : In the contract RegistryCore, the openMarketOrder function records the salt for each open order, but does not
verify that the order's salt is consistent when updateOpenOrder is updated. salt validation is required to ensure that the
order is updated correctly.

uniwhale.co Competitive Security Assessment

32

function openMarketOrder(
 Trade memory trade
)
 external
 override
 onlyRole(APPROVED_ROLE)
 onlyApprovedPriceId(trade.priceId)
 returns (bytes32)
 {
 salt++;
 trade.salt = salt;
 bytes32 orderHash = keccak256(abi.encode(trade));
 openTradesPerPriceIdCount[trade.user][trade.priceId]++;
 openTradesPerUserCount[trade.user]++;
 totalMarginPerUser[trade.user] = totalMarginPerUser[trade.user].add(
 trade.margin
);
 openTrades[trade.user][trade.priceId][trade.salt] = orderHash;
 _openTradeByOrderHash[orderHash] = trade;

 if (trade.isBuy) {
 totalLongPerPriceId[trade.priceId] += trade.leverage.mulDown(
 trade.margin
);
 _updateLongImbalancePerPriceId(trade.priceId);
 _updateShortImbalancePerPriceId(trade.priceId);
 } else {
 totalShortPerPriceId[trade.priceId] += trade.leverage.mulDown(
 trade.margin
);
 _updateLongImbalancePerPriceId(trade.priceId);
 _updateShortImbalancePerPriceId(trade.priceId);
 }

 minCollateral += trade.margin.mulDown(trade.maxPercentagePnL);

 return orderHash;
 }

 ...

function updateOpenOrder(
 bytes32 orderHash,

uniwhale.co Competitive Security Assessment

33

Trade memory trade
) external override onlyRole(APPROVED_ROLE) {
 Trade memory t = _openTradeByOrderHash[orderHash];

 _require(t.user == trade.user, Errors.TRADER_OWNER_MISMATCH);
 _require(t.priceId == trade.priceId, Errors.PRICE_ID_MISMATCH);
 _require(t.isBuy == trade.isBuy, Errors.TRADE_DIRECTION_MISMATCH);
 _openTradeByOrderHash[orderHash] = trade;
 totalMarginPerUser[trade.user] = totalMarginPerUser[trade.user]
 .sub(t.margin)
 .add(trade.margin);
 minCollateral -= t.margin.mulDown(t.maxPercentagePnL);
 minCollateral += trade.margin.mulDown(t.maxPercentagePnL);

 if (t.isBuy) {
 totalLongPerPriceId[t.priceId] -= t.leverage.mulDown(t.margin);
 totalLongPerPriceId[trade.priceId] += trade.leverage.mulDown(
 trade.margin
);
 _updateLongImbalancePerPriceId(trade.priceId);
 _updateShortImbalancePerPriceId(trade.priceId);
 } else {
 totalShortPerPriceId[t.priceId] -= t.leverage.mulDown(t.margin);
 totalShortPerPriceId[trade.priceId] += trade.leverage.mulDown(
 trade.margin
);
 _updateLongImbalancePerPriceId(trade.priceId);
 _updateShortImbalancePerPriceId(trade.priceId);
 }
 }
}

Recommendation
Xi_Zi : Verify the salt of the order when updateOpenOrder

_require(t.salt == trade.salt, Errors);

Client Response
Fixed

uniwhale.co Competitive Security Assessment

34

UNW-15: TradingCore::createTrade lack of notPaused
modifier

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/TradingCore.sol#L98-
L104

Mitigated Xi_Zi

Code

98: function createTrade(
99: OpenTradeInput memory openData,
100: uint256 openPrice,
101: uint256 slippage
102:) external view onlyRole(APPROVED_ROLE) returns (IRegistry.Trade memory) {
103: return _createTrade(openData, openPrice, slippage);
104: }

Description
Xi_Zi : Without the notPaused modifier, you can still create an order if the contract is suspended

function createTrade(
 OpenTradeInput memory openData,
 uint256 openPrice,
 uint256 slippage
) external view onlyRole(APPROVED_ROLE) returns (IRegistry.Trade memory) {
 return _createTrade(openData, openPrice, slippage);
 }

Recommendation
Xi_Zi : Suggestion: Add the "notPaused" modifier to the createTrade function.

Client Response
this is mitigated by allowing access only to approved roles

uniwhale.co Competitive Security Assessment

35

UNW-16:frontrun risk in LiquidityPool contract mint
function

Category Severity Code Reference Status Contributor

Race Condition Informational code/packages/contracts/core-
v1/contracts/iquidityPool.sol#L38-
L52

Acknowledged alansh

Code

38: function initialize(
39: address _owner,
40: string memory _name,
41: string memory _symbol,
42: ERC20 _baseToken,
43: AbstractRegistry _registry,
44: ISwapRouter _swapRouter
45:) public initializer {
46: __ERC20_init(_name, _symbol);
47: AbstractPool._initialize(_owner, _baseToken, _registry);
48: swapRouter = _swapRouter;
49: mintFee = 0;
50: burnFee = 0;
51: accruedFee = 0;
52: }

Description
alansh : There's a gap between initialize and setMintFee , scientist has a chance to frontrun.

Recommendation
alansh : Add a _mintFee parameter to LiquidityPool.initialize to ensure the mint fee is set once the logic
contract is in effect.

uniwhale.co Competitive Security Assessment

36

 function initialize(
 address _owner,
 string memory _name,
 string memory _symbol,
 ERC20 _baseToken,
 AbstractRegistry _registry,
 ISwapRouter _swapRouter,
 uint256 _mintFee
) public initializer {
 __ERC20_init(_name, _symbol);
 AbstractPool._initialize(_owner, _baseToken, _registry);
 swapRouter = _swapRouter;
 mintFee = 0;
 burnFee = _mintFee;
 accruedFee = 0;
 }

Client Response
we will implement this as part of our book of work.

uniwhale.co Competitive Security Assessment

37

UNW-17:funding fee should not be applied to margin in
TradingCoreLib._closeTrade function

Category Severity Code Reference Status Contributor

Logical Informational code/packages/contracts/core-
v1/contracts/libs/TradingCoreib.so
l#L52

Declined alansh

Code

52: averageImbalance.mulDown(closePosition).add(closeMargin)

Description
alansh : It's not fair for users to be charged funding fee for non-leveraged margin, should only be applied to position.

Recommendation
alansh : Consider below fix in the TradingCoreLib._closeTrade() function

 onCloseTrade.accumulatedFee =
 averageFundingFee.mulDown(
 averageImbalance.mulDown(closePosition)
) *
 int256(block.number - trade.executionBlock);

Client Response
this is a business decision, not a security concern.

uniwhale.co Competitive Security Assessment

38

UNW-18:updateLatestPrice might cause loss for user

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/TradingCore.sol#L14
2-L149
code/packages/contracts/core-
v1/contracts/TradingCore.sol#L16
8-L174
code/packages/contracts/core-
v1/contracts/TradingCore.sol#L19
2-L198
code/packages/contracts/core-
v1/contracts/TradingCore.sol#L22
5-L231
code/packages/contracts/core-
v1/contracts/TradingCore.sol#L25
5-L261

Acknowledged 0xxm

Code

uniwhale.co Competitive Security Assessment

39

142: uint256 updateFee = oracleAggregator.getUpdateFee(priceData.length);
143: IOracleProvider.PricePackage memory pricePackage = oracleAggregator
144: .updateLatestPrice{value: updateFee}(
145: openData.priceId,
146: openData.isBuy,
147: priceData,
148: updateFee
149:);

168: IOracleProvider.PricePackage memory pricePackage = oracleAggregator
169: .updateLatestPrice{value: updateFee}(
170: trade.priceId,
171: !trade.isBuy,
172: priceData,
173: updateFee
174:);

192: IOracleProvider.PricePackage memory pricePackage = oracleAggregator
193: .updateLatestPrice{value: updateFee}(
194: t.priceId,
195: !t.isBuy,
196: priceData,
197: updateFee
198:);

225: IOracleProvider.PricePackage memory pricePackage = oracleAggregator
226: .updateLatestPrice{value: updateFee}(
227: t.priceId,
228: !t.isBuy,
229: priceData,
230: updateFee
231:);

255: IOracleProvider.PricePackage memory pricePackage = oracleAggregator
256: .updateLatestPrice{value: updateFee}(
257: t.priceId,
258: !t.isBuy,
259: priceData,
260: updateFee
261:);

uniwhale.co Competitive Security Assessment

40

Description
0xxm : Several functions, such as openMarketOrder , in TradingCore contract require user to send ether as
updateFee for oracleAggregator. The exact fee is calculated by calling oracleAggregator.getUpdateFee . A user is
likely to send more fee to TradingCore to ensure updateFee is sufficient. This might cause problems in two ways:

This contract won't return excessive fee, which cause loss for user.
Other user can misappropriate the residue in this contrac by sending less or no ether to update price.

function openMarketOrder(
 OpenTradeInput calldata openData,
 bytes[] calldata priceData
) external payable notPaused nonReentrant {
 _require(
 openData.user == msg.sender || hasRole(APPROVED_ROLE, msg.sender),
 Errors.USER_SENDER_MISMATCH
);

 uint256 updateFee = oracleAggregator.getUpdateFee(priceData.length);
 IOracleProvider.PricePackage memory pricePackage = oracleAggregator
 .updateLatestPrice{value: updateFee}(
 openData.priceId,
 openData.isBuy,
 priceData,
 updateFee
);

 _openMarketOrder(openData, pricePackage.price);
}

Recommendation
0xxm : Check msg.value is sufficient to cover updateFee, and return excessive ether at the end of function. An
example of openMarketOrder could be:

uniwhale.co Competitive Security Assessment

41

function openMarketOrder(
 OpenTradeInput calldata openData,
 bytes[] calldata priceData
) external payable notPaused nonReentrant {
 ...
 uint256 updateFee = oracleAggregator.getUpdateFee(priceData.length);
 require(msg.value >= updateFee);
 ...
 _openMarketOrder(openData, pricePackage.price);

 // return remaining ether back to sender if applicable
 assembly {
 if gt(selfbalance(), 0) {
 let success := call(gas(), caller(), selfbalance(), 0, 0, 0, 0)
 if iszero(success) {
 revert(0, 0)
 }
 }
 }
}

Client Response
we will implement this as part of our book of work.

uniwhale.co Competitive Security Assessment

42

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

