
Compe��ve Security Assessment

uniwhale.co P2

Mar 20th, 2023

Secure3 secure3.io

$

uniwhale.co P2 Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

UNW-1:Centralization risk in RevenuePool::mint 8

UNW-2:Centralization risk in RevenuePool::transferBase and

RevenuePool::transferFromPool

10

UNW-3:Centralized risk in UniwhaleToken::mint 12

UNW-4:Code Style in UniwhaleToken contract 13

UNW-5:Duplicate functionality in RevenuePool::transferFromPool function 14

UNW-6:Tokens transferred into RevenuePool are improperly distributed among claimers 16

UNW-7:Unnecessary getter for public variables in contract AbstractStakeable and

RevenuePool

18

UNW-8: setShare might fail unexpectedly when change _share of existing claimer 20

UNW-9:logic issue in AbstractERC20Stakeable::_getRewards function 22

Disclaimer 23

uniwhale.co P2 Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

uniwhale.co P2 Competitive Security Assessment

4

Overview

Project Detail

Project Name uniwhale.co P2

Platform & Language Solidity

Codebase https://github.com/uniwhale-io/uniwhale-v1
audit commit - a83bb294d52b764483e6b02d537427b45b8c800b
final commit - 4eac1a2de89b1b6149e58d79f8d07da296ed59f9

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 1 0 0 1 0 0

Low 4 0 1 1 0 2

Informational 4 0 0 2 1 1

uniwhale.co P2 Competitive Security Assessment

5

Audit Scope

File Commit Hash

./tokens/UniwhaleToken.sol a83bb294d52b764483e6b02d537427b45b8c800b

./interfaces/AbstractStakeable.sol a83bb294d52b764483e6b02d537427b45b8c800b

./RevenuePool.sol a83bb294d52b764483e6b02d537427b45b8c800b

./interfaces/AbstractERC20Stakeable.sol a83bb294d52b764483e6b02d537427b45b8c800b

uniwhale.co P2 Competitive Security Assessment

6

Code Assessment Findings

ID Name Category Severity Status Contributor

UNW-1 Centralization risk in
RevenuePool::mint

Logical Medium Fixed 0xxm,
alansh

UNW-2 Centralization risk in
RevenuePool::transferBase and
RevenuePool::transferFromPool

Logical Low Declined 0xxm

UNW-3 Centralized risk in
UniwhaleToken::mint

Centralized
risk

Informational Mitigated Xi_Zi

UNW-4 Code Style in UniwhaleToken contract Code Style Informational Fixed Xi_Zi

uniwhale.co P2 Competitive Security Assessment

7

UNW-5 Duplicate functionality in
RevenuePool::transferFromPool
function

Logical Informational Declined Xi_Zi

UNW-6 Tokens transferred into RevenuePool
are improperly distributed among
claimers

Logical Low Declined 0xxm

UNW-7 Unnecessary getter for public variables
in contract AbstractStakeable and
RevenuePool

Gas
Optimization

Informational Fixed 0xxm

UNW-8 setShare might fail unexpectedly
when change _share of existing
claimer

Logical Low Fixed 0xxm,
alansh

UNW-9 logic issue in
AbstractERC20Stakeable::_getRew
ards function

Logical Low Acknowled
ged

alansh

uniwhale.co P2 Competitive Security Assessment

8

UNW-1:Centralization risk in RevenuePool::mint

Category Severity Code Reference Status Contributor

Logical Medium code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L93
-L100
code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L93
-L98

Fixed 0xxm, alansh

Code

93: function mint(
94: address to,
95: uint256 amount
96:) external override onlyApprovedClaimer(msg.sender) {
97: uint256 _amount = amount.min(baseToken.balanceOfFixed(address(this)));
98: baseToken.transferFixed(to, _amount);
99: }
100:}

93: function mint(
94: address to,
95: uint256 amount
96:) external override onlyApprovedClaimer(msg.sender) {
97: uint256 _amount = amount.min(baseToken.balanceOfFixed(address(this)));
98: baseToken.transferFixed(to, _amount);

Description
0xxm : The mint function allows any approved claimer to drain all baseToken in RevenuePool.
alansh : With the current implementation, anyone that has some share in the pool can transfer all baseToken. This
doesn't make sense.

Recommendation
0xxm : According to the logic of RevenuePool, the mint function should only allow cliamer to transfer baseToken up to
its balance.

Meanwhile, it is suggested to change the name of mint to a more appropriate name (maybe claim ?)

uniwhale.co P2 Competitive Security Assessment

9

function mint(
 address to,
 uint256 amount
) external override onlyApprovedClaimer(msg.sender) {
 uint256 _amount = amount.min(_balances[msg.sender]);
 _balances[msg.sender] -= _amount;
 baseToken.transferFixed(to, _amount);
}

alansh : _amount should capped with the balance of msg.sender , and decrease after transferFixed .

Client Response
Mint is limited up to the balance held by minter.

uniwhale.co P2 Competitive Security Assessment

10

UNW-2:Centralization risk in RevenuePool::transferBase
and RevenuePool::transferFromPool

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L41
code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L48

Declined 0xxm

Code

41: function transferBase(

48: function transferFromPool(

Description
0xxm : Function transferBase and transferFromPool allow owner to arbitrarily remove token from RevenuePool,
which can break the functionality of claimer balances. It is very likely that claimer might fail to claim tokens as stored in
_balances .

function transferBase(
 address _to,
 uint256 _amount
) external override onlyOwner {
 baseToken.transferFixed(_to, _amount);
}

function transferFromPool(
 address _token,
 address _to,
 uint256 _amount
) external override onlyOwner {
 _require(_token == address(baseToken), Errors.TOKEN_MISMATCH);
 baseToken.transferFixed(_to, _amount);
}

Impact: The severity is set to Informational, as it is unclear about project team's intention on function transferBase
and transferFromPool :

uniwhale.co P2 Competitive Security Assessment

11

if they are designed to rescue tokens or as a completely centralized way to tranfer tokens to claimers, it should be
fine.
if they are designed to claim tokens on behalf of claimer, it should be fixed as recommended.

Recommendation
0xxm : - Update _balances of _to at the end of above functions:

...
baseToken.transferFixed(_to, _amount);
_balances[_to] -= _balances[_to].min(_amount);

emit events for centralized operations

Client Response
Declined.They are designed to rescue tokens in an emergency.

uniwhale.co P2 Competitive Security Assessment

12

UNW-3:Centralized risk in UniwhaleToken::mint

Category Severity Code Reference Status Contributor

Centralized risk Informational code/packages/contracts/core-
v1/contracts/tokens/UniwhaleToke
n.sol#L52-L58
code/packages/contracts/core-
v1/contracts/tokens/UniwhaleToke
n.sol#L115

Mitigated Xi_Zi

Code

52: function initialize(
53: address owner,
54: string memory name,
55: string memory symbol,
56: bool _transferrable,
57: uint256 _cap
58:) public initializer {

115: _mint(to, amount);

Description
Xi_Zi : Centralized risk, privileged accounts can be minted at will, and the risk is higher. Multiple privileged addresses in
the contract, such as DEFAULT_ADMIN_ROLE, MINTER_ROLE, and OWNER, are the same account.As there are
privileged accounts of various roles in the contract, which play a key role in the contract, it is necessary to implement
multi-signature protection for the accounts of various roles in the contract.

Recommendation
Xi_Zi : Multi-sign protection is required for the accounts of various roles of the contract.And it is recommended to
separate the permissions of different privileged accounts.

Client Response
Mitigated.The contractor owner is a multi-sig contract.

uniwhale.co P2 Competitive Security Assessment

13

UNW-4:Code Style in UniwhaleToken contract

Category Severity Code Reference Status Contributor

Code Style Informational code/packages/contracts/core-
v1/contracts/interfaces/AbstractE
RC20Stakeable.sol#L47
code/packages/contracts/core-
v1/contracts/tokens/UniwhaleToke
n.sol#L102

Fixed Xi_Zi

Code

47: if (sender != address(this))

102: _balance += emission * (block.number.sub(_balanceLastUpdate));

Description
Xi_Zi : It is recommended to use curly braces in the if statement as much as possible. This can avoid possible
ambiguities and errors, especially when the code needs to be modified. Using curly braces can make the code easier to
understand and maintain, and it can also make the code more consistent.

Recommendation
Xi_Zi : It is recommended to use curly braces in the if statement as much as possible. This can avoid possible
ambiguities and errors, especially when the code needs to be modified. Using curly braces can make the code easier to
understand and maintain, and it can also make the code more consistent.

function setEmission(uint256 _emission) external onlyOwner {
 if (_balanceLastUpdate > 0) {
 _balance += emission * (block.number.sub(_balanceLastUpdate));//@audit
 }
 _balanceLastUpdate = block.number;
 emission = _emission;
 emit SetEmissionEvent(emission);
 }

Client Response
Fixed

uniwhale.co P2 Competitive Security Assessment

14

UNW-5:Duplicate functionality in
RevenuePool::transferFromPool function

Category Severity Code Reference Status Contributor

Logical Informational code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L41
-L55

Declined Xi_Zi

Code

41: function transferBase(
42: address _to,
43: uint256 _amount
44:) external override onlyOwner {
45: baseToken.transferFixed(_to, _amount);
46: }
47:
48: function transferFromPool(
49: address _token,
50: address _to,
51: uint256 _amount
52:) external override onlyOwner {
53: _require(_token == address(baseToken), Errors.TOKEN_MISMATCH);
54: baseToken.transferFixed(_to, _amount);
55: }

Description
Xi_Zi : The transferFromPool function and the transferBase function have the same function. There is only one additional
_token parameter, and the _token parameter can only be equal to baseToken and there is no setter function to update
baseToken . this means transferFromPool has the same effect as the transferBase and they are duplicate
functions. If onlyOwner can only transfer baseToken, it is recommended to remove the _token parameter without require
judgment.

Recommendation
Xi_Zi : It is recommended to modify it according to the actual situation to reduce duplicate functions.

uniwhale.co P2 Competitive Security Assessment

15

Client Response
Declined.While they are duplicates, RevenuePool inherits from IPool and requires to implement these functions, which
are designed to rescue tokens in an emergency.

uniwhale.co P2 Competitive Security Assessment

16

UNW-6:Tokens transferred into RevenuePool are improperly
distributed among claimers

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L76

Declined 0xxm

Code

76: _balances[address(claimer)] += amount.mulDown(share);

Description
0xxm : Contract RevenuePool uses _shares to store approvedClaimers and their shares, and the sum of all shares
is limited to 1e18. Whereas, the distributed token balance is calculated as amount.mulDown(share) when amount of
token is transferred in.

When the sum of all shares are less than 1e18, not all tokens transferred into RevenuePool are distributed to claimers. In
other word, the sum of claimer's balance is less than the total balance of RevenuePool .

Impact: Considering the RevenuePool is highly centralized, the undistributed token can still be correctly transferred to
claimers using off-chain records, the severity is Low

Recommendation
0xxm : Store sum of shares in a storage variable and distribute tokens using "claimer's share / sumOfShare"

uniwhale.co P2 Competitive Security Assessment

17

uint256 totalShares;
function setShare(address claimer, uint256 _share) external onlyOwner {
 _shares.set(claimer, _share);
 uint256 _length = _shares.length();
 uint256 _sum = 0;
 for (uint256 i = 0; i < _length; i++) {
 (, uint256 __share) = _shares.at(i);
 _sum += __share;
 }
 _require(_sum <= 1e18, Errors.INVALID_SHARE);
 totalShares = _sum;
 emit SetShareEvent(claimer, _share);
}

function transferIn(uint256 amount) external {
 baseToken.transferFromFixed(msg.sender, address(this), amount);
 uint256 _length = _shares.length();
 for (uint256 i = 0; i < _length; i++) {
 (address claimer, uint256 share) = _shares.at(i);
 _balances[address(claimer)] += amount.mulDown(share).divDown(totalShares);
 }
}

Client Response
Declined.This is an intended behaviour. While we do not want to see the sum of shares exceeding 100% (hence the
check against the sum), we also do not want to see the share being re-based by the sum.

uniwhale.co P2 Competitive Security Assessment

18

UNW-7:Unnecessary getter for public variables in contract
AbstractStakeable and RevenuePool

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/packages/contracts/core-
v1/contracts/interfaces/AbstractSt
akeable.sol#L16
code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L19

Fixed 0xxm

Code

16: uint256 public totalStaked;

19: mapping(address => uint256) public _balances;

Description
0xxm : Compiler will generate a default getter function for public variable. The getTotalStaked() function is
unnecessary for public variable totalStaked .

uint256 public totalStaked;
...
function getTotalStaked() external view virtual override returns (uint256) {
 return totalStaked;
}

The same case applies to balance(address claimer) function for public variable _balances in contract
RevenuePool .

uniwhale.co P2 Competitive Security Assessment

19

mapping(address => uint256) public _balances;
...
function balance() external view override returns (uint256) {
 return _balance(msg.sender);
}

//@dev may be removed before deployment
function balance(address claimer) external view returns (uint256) {
 return _balance(claimer);
}

function _balance(address claimer) internal view returns (uint256) {
 return _balances[claimer];
}

Recommendation
0xxm : - declare totalStaked and _balances as internal variables

Client Response
Fixed

uniwhale.co P2 Competitive Security Assessment

20

UNW-8: setShare might fail unexpectedly when change
_share of existing claimer

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L59
-L66
code/packages/contracts/core-
v1/contracts/RevenuePool.sol#L65

Fixed 0xxm, alansh

Code

59: uint256 _length = _shares.length();
60: uint256 _sum = 0;
61: for (uint256 i = 0; i < _length; i++) {
62: (, uint256 __share) = _shares.at(i);
63: _sum += __share;
64: }
65: _require(_sum + _share <= 1e18, Errors.INVALID_SHARE);
66: _shares.set(claimer, _share);

65: _require(_sum + _share <= 1e18, Errors.INVALID_SHARE);

Description
0xxm : Contract RevenuePool uses _shares to store approvedClaimers and their shares, and the sum of all shares
is limited to 1e18. However the total share should not be calculated as _sum + _share when modifying share of
existing claimer instead of set share for new claimer.

Consider the following case:

the total shares in _shares is 9e17, and Alice is one of claimers with share equals to 1e17.
the owner want to change Alice's share from 1e17 to 2e17, which increases the share by 1e17 and total shares should
be exactly 1e18
however, the setShare function will always fail, as _sum is 9e17 and _share is 2e17 (_sum + _share > 1e18)

Impact: In such a case, the owner can still use a two-step workaround that first set share to zero and then to expect
value, without modifying the code. The severity is defined as LOW
alansh : The current implementation doesn't consider that claimer may already be in the _shares map.

uniwhale.co P2 Competitive Security Assessment

21

Recommendation
0xxm : Move the check after the shares.set operation:

function setShare(address claimer, uint256 _share) external onlyOwner {
 _shares.set(claimer, _share);
 uint256 _length = _shares.length();
 uint256 _sum = 0;
 for (uint256 i = 0; i < _length; i++) {
 (, uint256 __share) = _shares.at(i);
 _sum += __share;
 }
 _require(_sum <= 1e18, Errors.INVALID_SHARE);
 emit SetShareEvent(claimer, _share);
}

alansh :

_require(_sum + _share <= 1e18, Errors.INVALID_SHARE);

should be changed to:

_require(_sum - _shares[claimer] + _share <= 1e18, Errors.INVALID_SHARE);

Client Response
Fixed.We accept 0xxm’s suggestion

uniwhale.co P2 Competitive Security Assessment

22

UNW-9:logic issue in
AbstractERC20Stakeable::_getRewards function

Category Severity Code Reference Status Contributor

Logical Low code/packages/contracts/core-
v1/contracts/interfaces/AbstractE
RC20Stakeable.sol#L66-L71

Acknowledged alansh

Code

66: return
67: _rewardToken
68: .balance()
69: .sub(_balanceBaseByStaker[user][_rewardToken])
70: .mulDown(_stakedByStaker[user])
71: .divUp(totalStaked);

Description
alansh : With the current implementation, users will experience sudden reward decrease.

Imagine that a whale suddenly stakes a large amount of token, then in the reward formula, only totalStaked changes
significantly, and the reward will suddenly decrease a lot. This is not what users expect.

Recommendation
alansh : The correct logic is to globally maintain a reward_per_staked_token , and when a user stakes, save a
snapshot of current reward_per_staked_token , then when calculating reward, simply staked_amount *
(current_reward_per_staked_token-snapshot_reward_per_staked_token) . And the global
reward_per_staked_token is calculated incrementally:

reward_per_staked_token += total_reward_delta/total_staked_amount;

Client Response
Acknowledged.The reward distribution is being re-worked on based on feedbacks and the recommended fix will be
implemented as part of the upgrade

uniwhale.co P2 Competitive Security Assessment

23

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

