
Security Assessment for

Uniwhale

March 27, 2023

Executive Summary

Overview

Project Name Uniwhale

Codebase Path git://github.com/uniwhale-io/uniwhale-
v1

Scan Engine Security Analyzer

Scan Time 2023/03/27 17:22:16

Source Code uniwhale-io/uniwhale-v1

commit:508f2a11

Total

Critical Issues 0

High risk Issues 0

Medium risk
Issues 4

Low risk Issues 0

Informational
Issues 0

Critical Issues

The issue can cause large
economic losses, large-scale data
disorder, loss of control of authority
management, failure of key
functions, or indirectly affect the
correct operation of other smart
contracts interacting with it.

High Risk Issues

The issue puts a large number of
users' sensitive information at risk
or is reasonably likely to lead to
catastrophic impacts on clients'
reputations or serious financial
implications for clients and users.

Medium Risk
Issues

The issue puts a subset of users'
sensitive information at risk, would
be detrimental to the client's
reputation if exploited, or is
reasonably likely to lead to
moderate financial impact.

Low Risk Issues

The risk is relatively small and could
not be exploited on a recurring
basis, or is a risk that the client has
indicated is low-impact in view of
the client's business circumstances.

Informational
Issue

The issue does not pose an
immediate risk but is relevant to
security best practices or Defence
in Depth.

Critical Issues 0% 0

High risk Issues 0% 0

Medium risk Issues 100% 4

Low risk Issues 0% 0

Informational Issues 0% 0

Summary of Findings

MetaScan security assessment was performed on March 27, 2023 17:22:16 on project Uniwhale with
the repository uniwhale-io/uniwhale-v1 on branch default branch. The assessment was carried out
by scanning the project's codebase using the scan engine Security Analyzer. There are in total 4
vulnerabilities / security risks discovered during the scanning session, among which 0 critical
vulnerabilities, 0 high risk vulnerabilities, 4 medium risk vulnerabilities, 0 low risk vulnerabilities, 0
informational issues.

ID Description Severity Alleviation

MSA-001 Centralized Roles Medium risk Acknowledged

MSA-002 Set Share on an Existing Claimer Medium risk Fixed

MSA-003 Functions That are Necessary but not Called Medium risk Fixed

MSA-004 The Rule of Update Reward in the `_update` Function Medium risk Acknowledged

Findings

Critical (0)

No Critical vulnerabilities found here

High risk (0)

No High risk vulnerabilities found here

Medium risk (4)

1. Centralized Roles Medium risk Security Analyzer

In the contract UniwhaleToken, the role owner has the privileges of the below functions:

snapshot();
pause(): pause the contract;
unpause(): unpause the contract;
safeTransferrable(): set the transferrable;
setEmission(): set the _balanceLastUpdate;
pauseStaking(): set the _stakingPaused.
In the contract UniwhaleToken, the role MINTER_ROLE has the privileges of the below
functions:
mint(): mint tokens to the to address;
addBalance: add the balance;
removeBalance: decrease the balance.
In the contract RevenuePool, the role owner has the privileges of the below functions:
transferBase(): transfer baseToken from the contract to any account.
transferFromPool(): transfer baseToken from the contract to any account;
setShare: set _shares;
In the contract RevenuePool, the role approvedClaimer has the privileges of the below functions:
addBalance: add balance to the ApprovedClaimer role;
removeBalance: remove balance to the ApprovedClaimer role.
mint(): mint tokens to any account.

File(s) Affected

contracts/RevenuePool.sol #1-12
contracts/tokens/UniwhaleToken.sol #1-21

Examples

Recommendation

Applying the multi-signature wallet and the timelock to mitigate the risk of centralized roles.

Alleviation Acknowledged

The owner would be a multi-sig contract, partially mitigating the centralization risk.

// SPDX-License-Identifier: BUSL-1.1

import "./interfaces/AbstractPool.sol";

pragma solidity ^0.8.17;

contract RevenuePool is AbstractPool, IDistributable {

1
2
3

10
11
12

http://localhost:3002/uniwhale-io/uniwhale-v1/blob/master/contracts/RevenuePool.sol
http://localhost:3002/uniwhale-io/uniwhale-v1/blob/master/contracts/tokens/UniwhaleToken.sol

2. Set Share on an Existing Claimer Medium risk Security Analyzer

The function `setShare` requires the total shares of all the claimers to be less than or equal to `1e18`.However. it lacks a check on
whether the claimer existed in the set `_shares` or not. If the parameter `claimer` existed in the array `_shares`, the `_sum` should
deduct the old share of the existing `claimer` before the `_require` check.

File(s) Affected

contracts/RevenuePool.sol #63-74

Examples

Recommendation

Check if the `claimer` existed in the `_shares` set or not and deduct the old share of the existing `claimer`.

Alleviation Fixed

The client fixed this issue by updating the share for the user first and then checking the sum shares in the PR:
https://github.com/uniwhale-io/uniwhale-v1/pull/258/files

3. Functions That are Necessary but not Called Medium risk Security Analyzer

In the parent contract `AbstractStakeable`, the internal function `_addRewardToken()` adds the rewardToken to the set `_rewardTokens`.
However, the sub-contract `UniwhaleToken` does not call the `_addRewardToken()` function in the parent contract.
As a result, the set
`_rewardTokens` will always be empty and users will not get any reward for their stakings.
Similarly to the `_removeRewardToken()`
function of the parent contract `AbstractStakeable`.

File(s) Affected

contracts/interfaces/AbstractStakeable.sol #103-106

Examples

Recommendation

Add a function in the sub-contract `UniwhaleToken` to call its parent's internal functions `_addRewardToken()` and
`_removeRewardToken()`

Alleviation Fixed

The client fixed this issue as the recommendation, in the PR: https://github.com/uniwhale-io/uniwhale-v1/pull/258/files

4. The Rule of Update Reward in the `_update` Function Medium risk Security Analyzer

The _update() function in the AbstractERC20Stakeable contract tries to update the reward of each staker.
However, the following steps
will make Alice withdraw all the reward:

Assume the owner gives some rewardToken first and the rewardToken.balance() is 100;
Alice stakes 10 tokens;
Bob stakes 20 tokens;
Alice stakes 10 tokens and the transaction will revert because of an overflow.

 function setShare(address claimer, uint256 _share) external onlyOwner {
 _shares.set(claimer, _share);

 uint256 _length = _shares.length();

 emit SetShareEvent(claimer, _share);

 }

63
64
65

72
73
74

 function _addRewardToken(IMintable rewardToken) internal virtual {

 _rewardTokens.add(address(rewardToken));

 emit AddRewardTokenEvent(address(rewardToken));

 }

103
104
105
106

http://localhost:3002/uniwhale-io/uniwhale-v1/blob/master/contracts/RevenuePool.sol
https://github.com/uniwhale-io/uniwhale-v1/pull/258/files
http://localhost:3002/uniwhale-io/uniwhale-v1/blob/master/contracts/interfaces/AbstractStakeable.sol
https://github.com/uniwhale-io/uniwhale-v1/pull/258/files

Alice can claim 100 reward tokens without waiting once the owner gives the rewardToken to the pool.
Here are the calculation steps of
the _update function caused by the above three calls.

//Alice stakes with an amount of 10 tokens;

//_update(Alice,10)

_update(Alice, 10)

oldStaked = 0

newStaked = 0 + 10 = 10

If _length == 1

accuredRewards = _getRewards(Alice, rewardToken) = 0

balanceOut = 0 + 0 = 0

newTotalStaked = 0 - 0 = 0

balanceIn = 100 - 0 = 100 since rewardToken.balance() == 100

newTotalStaked > 0 is false

rewardToken.removeBalance(0);

rewardToken.addBalance(100); results rewardToken.balance() == 200

_balanceBaseByStaker[Alice][rewardToken] = 100

_accuredRewardsByStaker[Alice][rewardToken] += 0 = 0

_stakedByStaker[Alice] = 10

totalStaked = 0 + 10 = 10

_getRewards()

totalStaked == 0

 Return 0;

//Bob stakes with an amount of 20 tokens;

//_update(Alice,10)->_update(Bob,20)

_update(Bob, 20)

oldStaked = 0

newStaked = 0 + 20 = 20

If _length = 1

accruedRewards = 0

balanceOut = 0 + 0 = 0

newTotalStaked = 10 - 0 = 10

balanceIn = 200 - 0 = 200

If (newTotalStaked > 0)

 balanceIn = 200 * 20 / 10 = 400

rewardToken.removeBalance(0)

rewardToken.addBalance(400); results in rewardToken.balance() == 600

_balanceBaseByStaker[Bob][rewardToken] = 400

_accruedRewardsByStaker[Bob][rewardToken] += 0 = 0

_stakedByStaker[Bob] = 20

totalStaked = 10 + 20 = 30

_getRewards()

 200

 * 0

 / 10

 - 0

 = 0

//Alice stakes with an amount of 10 tokens

//_update(Alice,10)->_update(Bob,20)

//->_update(Alice,10)

oldStaked = 10

newStaked = 10 + 10 = 20

If _length == 1

accruedRewards = 100;

balanceOut = 100 + 100 = 200

newTotalStaked = 30 - 10 = 20

balanceIn = 600 - 200 = 400

newTotalStaked > 0

 balanceIn = 400 * 20 / 20 = 400

rewardToken.removeBalance(200);

rewardToken.addBalance(400); results in the rewardToken.balance() == 800;

_balanceBaseByStaker[Alice][rewardToken] = 400;

_accruedRewardsByStaker[Alice][rewardToken] += 100 = 100

_stakedByStaker[Alice] = 20

totalStaked = 30 + 10 = 40

_getRewards()

 600

 * 10

 / 30

 - 100

 = 100

//Alice claims tokens

//_update(Alice, 0)

oldStaked = 20;

newStaked = 20 + 0 = 20;

assumes that _length == 1

accruedRewards = 0

...

_accruedRewardByStaker[Alice][rewardToken] += 0 = 100

_getRewards()

 800

 * 20

 / 40

 - 400

Here is another case where Bob can withdraw most of the reward by using the sandwich attack with the following steps:

Alice stakes 10 tokens for 1 month;
A month later.
Bob stakes 1000 tokens (before the owner distributes the reward token);
Assume the owner gives some rewardToken first and the rewardToken.balance() is 100;
Bob claims the 99 reward token, even though Alice has been staking longer;
Here are the calculation steps of the _update function
caused by the above three calls.

//Alice stakes with an amount of 10 tokens;

//_update(Alice,10)

_update(Alice, 10)

oldStaked = 0

newStaked = 0 + 10 = 10

If _length == 1

accuredRewards = _getRewards(Alice, rewardToken) = 0

balanceOut = 0 + 0 = 0

newTotalStaked = 0 - 0 = 0

balanceIn = 0 - 0 = 0

newTotalStaked > 0 is false

rewardToken.removeBalance(0);

rewardToken.addBalance(0); results rewardToken.balance() == 0

_balanceBaseByStaker[Alice][rewardToken] = 0

_accuredRewardsByStaker[Alice][rewardToken] += 0 = 0

_stakedByStaker[Alice] = 10

totalStaked = 0 + 10 = 10

_getRewards()

totalStaked == 0

 Return 0;

//Bob stakes with an amount of 1000 tokens;

//_update(Alice,10)->_update(Bob,1000)

_update(Bob, 100)

oldStaked = 0

newStaked = 0 + 1000 = 1000

If _length = 1

accruedRewards = 0

balanceOut = 0 + 0 = 0

newTotalStaked = 10 - 0 = 10

balanceIn = 0 - 0 = 0

If (newTotalStaked > 0)

 balanceIn = 0 * 1000 / 10 = 0

rewardToken.removeBalance(0)

rewardToken.addBalance(0);

_balanceBaseByStaker[Bob][rewardToken] = 0

_accruedRewardsByStaker[Bob][rewardToken] += 0 = 0

_stakedByStaker[Bob] = 1000

totalStaked = 10 + 1000 = 1010

_getRewards()

 0

 - 0

 = 0

//Alice stakes with an amount of 10 tokens

//_update(Alice,10)->_update(Bob,1000)-> minter add 100 reward token

rewardToken.balance() == 100

//Bob claims tokens

//_update(Bob, 0)

oldStaked = 1000;

newStaked = 1000 + 0 = 1000;

assumes that _length == 1

accruedRewards = 0

...

_accruedRewardByStaker[Alice][rewardToken] += 0 = 99

_getRewards()

 100

 * 1000

 / 1010

 - 0

File(s) Affected

contracts/interfaces/AbstractStakeable.sol #113-158

Examples

Alleviation Acknowledged

The Uniwhale team responded that the team mitigates the issue by distributing the rewards in a linear way, and the team is looking to
improve on the economic design/logic.

Low risk (0)

No Low risk vulnerabilities found here

Informational (0)

No Informational vulnerabilities found here

 function _update(address staker, int256 stakedDelta) internal virtual {

 uint256 oldStaked = _stakedByStaker[staker];

 uint256 newStaked = oldStaked.add(stakedDelta).toUint256();

 .divDown(_totalStaked)

 .sub(_balanceBaseByStaker[staker][_rewardToken]);

 }

113
114
115

156
157
158

http://localhost:3002/uniwhale-io/uniwhale-v1/blob/master/contracts/interfaces/AbstractStakeable.sol

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used
by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.
This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,
nor may copies be delivered to any other person other than the Company, without MetaTrust’s prior written
consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product”
or “asset” created by any team or project that contracts MetaTrust to perform a security assessment. This
report does not provide any warranty or guarantee regarding the absolute bug-free nature of the
technology analyzed, nor do they provide any indication of the technologies proprietors, business, business
model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. MetaTrust’s position is
that each company and individual are responsible for their own due diligence and continuous security.
MetaTrust’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing
new and consistently changing technologies, and in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

The assessment services provided by MetaTrust is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services, reports, and
materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment
reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR
ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS Security Assessment
AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE
MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, MetaTrust HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,
MetaTrust SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM COURSE
OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, MetaTrust MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK
PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET
CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE
COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,
ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE
FOREGOING, MetaTrust PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION
OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED
RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR
SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS
OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER MetaTrust NOR ANY OF MetaTrust’S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,
RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE.
MetaTrust WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR
INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED
AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF
ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES,
ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED
TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT
SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER
PERSON WITHOUT MetaTrust’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR
OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING Security
Assessment MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION
AGAINST MetaTrust WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY
ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF MetaTrust CONTAINED IN THIS AGREEMENT ARE SOLELY
FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF
ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND
WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST
MetaTrust WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO
OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

